

Dr. Shimaa Ismail Lecture 1

## ECectronics

## Dr/ Shimaa Ismaí Mohamed

Lecturer at Information Systems Department,
Faculty of Computers and Artificial Intelligence, Benha University, Egypt.

Email: shimaa.Mustafa@fci.bu.edu.eg
Website: https://bu.edu.eg/staff/shimaamustafa14


## Course Information

- Course Code: BS131
- Course Materials:
- Lecture Notes
- Assignments
- Lab Manual
- Lab Assignments


## - Textbook:

- Nilsson J.W., Reidel S. Electric Circuits. 10th Edition, Prentice Hall


## Course Policy



- Students are expected to participate and attend the class in time.
- Students are responsible to submit assignments in time.
- Exams will be a combination of lectures in class and homework assignments.
- There are two Midterms that will be carried out in this semester.
- A homework paper will not be accepted after graded papers have been returned, after a solution has been distributed, or after the final examination.


# Absence Policy and Examination 

- Students absent that exceeds (25\% lectures) are being considered dropped from the course.
- After 2 lectures absent a warning is issued for the student.
- After 3 lectures absent student will be dropped from the class.
- There will be no alternative exams except under emergencies.
- If a student cannot attend the exam, then student must make arrangement with the instructor prior to the planned absence.
- The emergency alternative exam will be either written or oral.


## Grading

- An absolute grading scheme will be used to assess your final grade:
- You should get $30 \%$ of the final degree to pass the course
(about 12 marks)


## Grade

Mid-Term 1 ..... 15\%
Mid-Term 2 ..... 15\%
Attendance \& Assignments ..... 15\%
Labs ..... 15\%
Final Exam ..... 40\%

## Chapter 1: Circuit Variables

## CHAPTERCONTENTS

- Electrical Engineering: An Overview
- The International System of Units
- Circuit Analysis: An Overview
- Voltage and Current
- The Ideal Basic Circuit Element
- Power and Energy


## CHAPTEROBJECTIVES

- Understand and be able to use SI units and the standard prefixes for powers of 10 .
- Know and be able to use the definitions of voltage and current.
- Know and be able to use the definitions of power and energy.
- Be able to use the passive sign convention to calculate the power for an ideal basic circuit element given its voltage and current.



## Electronics Definition

- What do we mean by Electronics?
- Electronics covers the physics, engineering, technology and applications that deal with the emission, flow and control of electrons in vacuum and matter.


## Branches of Electronics

- Digital electronics
- Analogue electronics
- Microelectronics
- Circuit design
- Integrated circuits
- Power electronics
- Optoelectronics
- Semiconductor devices
- Embedded systems
- Audio electronics
- Telecommunications
- ...


## Circuit Theory

- Mathematical model that approximates the behavior of an actual electrical system.
- Commonly used to refer to an actual electrical system as well as to the model that represents it.


## An electric circuit is an

 interconnection of electric components such that electric charge is made to flow along a closed path (a circuit), usually to perform some useful task.
## Functions:

To transfer energy from one point to another.

## Basic Concepts:

$\checkmark$ Charge.
$\checkmark$ Current.
$\checkmark$ Voltage.
$\checkmark$ Power.
$\checkmark$ Circuit elements.
$\checkmark$ Energy.

flow of electrons

## SI and Prefix

Engineers compare theoretical results to experimental results and compare competing engineering designs using quantitative measures. Engineers communicate using standard language of measurement:

International System of Units (SI) adopted in 1960

## Basic Units

| TABLE 1.1 | The International System of Units (SI) |  |
| :--- | :--- | :--- |
| Quantity | Basic Unit | Symbol |
| Length | meter | m |
| Mass | kilogram | kg |
| Time | second | s |
| Electric current | ampere | A |
| Thermodynamic temperature | degree kelvin | K |
| Amount of substance | mole | mol |
| Luminous intensity | candela | cd |


| TABLE 1.3 <br> Powers of $\mathbf{1 0}$ | Standardized Prefixes to Signify |  |
| :--- | :--- | :--- |
| Prefix | Symbol | Power |
| atto | a | $10^{-18}$ |
| femto | f | $10^{-15}$ |
| pico | p | $10^{-12}$ |
| nano | n | $10^{-9}$ |
| micro | $\mu$ | $10^{-6}$ |
| milli | m | $10^{-3}$ |
| centi | c | $10^{-2}$ |
| deci | d | $10^{-1}$ |
| deka | da | 10 |
| hecto | h | $10^{2}$ |
| kilo | k | $10^{3}$ |
| mega | M | $10^{6}$ |
| giga | G | $10^{9}$ |
| tera | T | $10^{12}$ |

## SI and Prefix

Engineers compare theoretical results to experimental results and compare competing engineering designs using quantitative measures. Engineers communicate using standard language of measurement:

International System of Units (SI) adopted in 1960
These are derived from basic units


## Charge, Current and Voltage

Charge - The concept of electric charge is the basis for describing all electrical phenomena.
Let's review some important characteristics of electric charge:

- The charge is bipolar, meaning that electrical effects are described in terms of positive and negative charges,
- The electric charge exists in discrete quantities, which are integral multiples of the electronic charge,
- Electrical effects are attributed to both the separation of charge and charges in motion.

In circuit theory, the separation of charge creates an electric force (voltage), and the motion of charge creates an electric fluid (current).

## Charge, Current and Voltage

Charge - the most basic quantity of electric circuit - measured in Coulomb (C)

Elements of an atom : electrons, protons and neutron


1 electron carries $1.602 \times 10^{-19} \mathrm{C}$ of (negative) charge
i.e. - 1 C consist of $1 /\left(1.602 \times 10^{-19}\right)$ of electrons
$=6.24 \times 10^{18}$ electrons

## Charge, Current and Voltage

The electrical effects caused by charges in motion depend on the rate of charge flow. The rate of charge flow is known as the Electric Current, measured in amperes (A)


Direction of current flow = movement of positive charge

Current : time rate of change of (positive) charge

$$
\text { Mathematically, } \quad \mathrm{i}=\frac{\mathrm{dq}}{\mathrm{dt}}
$$

$i=$ the current in amperes,
$q=$ the charge in coulombs,
$t=$ the time in seconds.

## Charge, Current and Voltage

$$
\mathrm{i}=\frac{\mathrm{dq}}{\mathrm{dt}} \Rightarrow \mathrm{q}=\int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{i} \mathrm{dt} \quad \text { - Charge transferred between } \mathrm{t}_{\mathrm{o}} \text { and } \mathrm{t}
$$

e.g. $1 \mathrm{~A}=1$ coulomb of charge flows in 1 second


Charge, Current and Voltage


## Charge, Current and Voltage

Two common types of current flow



## Direct current - DC

- constant with time

Alternating current - AC

- varies sinusoidally with time
we will discuss more on this later in the course


Figure 1.5 A An ideal basic circuit element.

## Example 1.2 Relating Current and Charge

No charge exists at the upper terminal of the element in Fig. 1.5 for $t<0$. At $t=0$, a 5 A current begins to flow into the upper terminal.
a) Derive the expression for the charge accumulating at the upper terminal of the element for $t>0$.
b) If the current is stopped after 10 seconds, how much charge has accumulated at the upper terminal?

## Solution

a) From the definition of current given in Eq. 1.2, the expression for charge accumulation due to current flow is

$$
q(t)=\int_{0}^{t} i(x) d x
$$

Therefore,
$q(t)=\int_{0}^{t} 5 d x=\left.5 x\right|_{0} ^{t}=5 t-5(0)=5 t \mathrm{C}$ for $t>0$.
b) The total charge that accumulates at the upper terminal in 10 seconds due to a 5 A current is $q(10)=5(10)=50 \mathrm{C}$.


Figure 1.5 A An ideal basic circuit element.
1.3 The current at the terminals of the element in Fig. 1.5 is

$$
\begin{array}{ll}
i=0, & t<0 \\
i=20 e^{-5000 t} \mathrm{~A}, & t \geq 0
\end{array}
$$

Calculate the total charge (in microcoulombs) entering the element at its upper terminal.

AP 1.3 Remember from Eq. (1.2), current is the time rate of change of charge, or $i=\frac{d q}{d t}$ In this problem, we are given the current and asked to find the total charge. To do this, we must integrate Eq. (1.2) to find an expression for charge in terms of current:

$$
q(t)=\int_{0}^{t} i(x) d x
$$

We are given the expression for current, $i$, which can be substituted into the above expression. To find the total charge, we let $t \rightarrow \infty$ in the integral. Thus we have

$$
\begin{aligned}
q_{\text {total }} & =\int_{0}^{\infty} 20 e^{-5000 x} d x=\left.\frac{20}{-5000} e^{-5000 x}\right|_{0} ^{\infty}=\frac{20}{-5000}\left(e^{-\infty}-e^{0}\right) \\
& =\frac{20}{-5000}(0-1)=\frac{20}{5000}=0.004 \mathrm{C}=4000 \mu \mathrm{C}
\end{aligned}
$$

## Charge, Current and Voltage

Whenever positive and negative charges are separated, energy is expended.
Voltage (potential difference) between two points, being equal to the electrical energy gained by a unit positive electric charge moving from one point to the other. measured in volts (V)

$$
\text { Mathematically, } \quad v=\frac{d w}{d q}
$$

$$
1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C}
$$

$v=$ the voltage in volts,
$w=$ the energy in joules,
$q=$ the charge in coulombs.

## Charge, Current and Voltage

Voltage (potential difference) between two points, being equal to the electrical energy gained by a unit positive electric charge moving from one point to the other.

$\mathrm{V}_{\mathrm{ab}}$ : Electrical energy gained by a unit positive charge when it moves from $b$ to $a$
"Point $a$ is at potential of $V_{a b}$ higher than point b"
"Potential at point a with respect to point $b$ is $V_{a b}$ "

## Charge, Current and Voltage


$\Leftrightarrow$

"Point a is at potential of -10 V lower than point b"
"Point $b$ is at potential of -10 V higher than point a"

## Charge, Current and Voltage

Two common types of voltage


## DC Voltage

- constant with time



## AC Voltage

- varies sinusoidally with time


## Power an Energy

Power is "the time rate of expending or absorbing Energy."
Mathematically, energy per unit time is expressed in the form of a derivative, or

$$
\begin{aligned}
& p=\frac{d w}{d t}, \quad p=\text { the power in watts }, \\
& w=\text { the energy in joules, } \\
& i=\text { the time in seconds. }
\end{aligned}
$$

power is measured in watts (W)

$$
p=\frac{d w}{d t}=\left(\frac{d w}{d q}\right)\left(\frac{d q}{d t}\right)
$$

$$
p=v i
$$

## Power an Energy



- Power of an element is the product of voltage across it and the current through it
- Use the Passive Sign Convention when calculating power:

$p=v i$
Absorbing power


$$
p=-v i
$$

Supplying power

## Power an Energy

- Using passive sign convention, power can either be positive or negative

ABSORBED


## Examples



## Power an Energy

- Using passive sign convention, power can either be positive or negative

ABSORBED


## Examples



## Power an Energy

- Using passive sign convention, power can either be positive or negative

ABSORBED


## Examples



## Power an Energy

- Using passive sign convention, power can either be positive or negative

ABSORBED


## Examples



## Power an Energy

- Using passive sign convention, power can either be positive or negative

ABSORBED SUPPLIED

## Examples



## Power an Energy

For any electric circuit,

$$
\sum \mathrm{p}=0
$$

Sums of power absorbed and supplied in a circuit always equal to ZERO

## Power an Energy

We paid bill to TNB based on the amount of electric energy we consumed - energy is measured in Joules (J)

Since $\quad \mathrm{p}=\frac{\mathrm{dw}}{\mathrm{dt}}$, energy absorbed or supplied by an element from $t_{0}$ to $t$ is:

$$
w=\int_{t_{0}}^{t} p d t=\int_{t_{0}}^{t} v i d t
$$

## Example 1.3 Relating Voltage, Current, Power, and En



Figure 1.5 A An ideal basic circuit element.

$$
\begin{array}{ll}
i=0, & t<0 \\
i=20 e^{-5000 t} \mathrm{~A}, & t \geq 0
\end{array}
$$

Assume that the voltage at the terminals of the element in Fig. 1.5, whose current was defined in Assessment Problem 1.3, is

$$
\begin{array}{ll}
v=0 & t<0 ; \\
v=10 e^{-5000 t} \mathrm{kV}, & t \geq 0 .
\end{array}
$$

a) Calculate the power supplied to the element at 1 ms .
b) Calculate the total energy (in joules) delivered to the circuit element.

## Solution

a) Since the current is entering the + terminal of the voltage drop defined for the element in Fig. 1.5, we use a " + " sign in the power equation.

$$
\begin{aligned}
& p=v i=\left(10,000 e^{-5000 t}\right)\left(20 e^{-5000 t}\right)=200,000 e^{-10,000 t} \mathrm{~W} . \\
& \begin{aligned}
p(0.001) & =200,000 e^{-10,000 t(0.001)}=200,000 e^{-10} \\
& =200,000\left(45.4 \times 10^{-6}\right)=9.0799 \mathrm{~W}
\end{aligned}
\end{aligned}
$$

b) From the definition of power given in Eq. 1.3, the expression for energy is

$$
w(t)=\int_{0}^{t} p(x) d x
$$

To find the total energy delivered, integrate the expresssion for power from zero to infinity. Therefore,

$$
\begin{aligned}
w_{\text {total }}= & \int_{0}^{\infty} 200,000 e^{-10,000 x} d x=\left.\frac{200,000 e^{-10,000 x}}{-10,000}\right|_{0} ^{\infty} \\
& =-20 e^{-\infty}-\left(-20 e^{-0}\right)=0+20=20 \mathrm{~J}
\end{aligned}
$$

Thus, the total energy supplied to the circuit element is 20 J .

## Balancing Power

TABLE 1.4 Volatage and current values for the circuit in Fig. 1.7.

| Component | $\boldsymbol{v}(\mathbf{V})$ | $\boldsymbol{i}(\mathbf{A})$ |
| :---: | ---: | ---: |
| a | 120 | -10 |
| b | 120 | 9 |
| c | 10 | 10 |
| d | 10 | 1 |
| e | -10 | -9 |
| f | -100 | 5 |
| g | 120 | 4 |
| h | -220 | -5 |



Figure 1.7 - Circuit model for power distribution in a home, with voltages and currents defined.

## Balancing Power

$$
\begin{array}{ll}
p_{a}=v_{a} i_{a}=(120)(-10)=-1200 \mathrm{~W} & p_{b}=-v_{b} i_{b}=-(120)(9)=-1080 \mathrm{~W} \\
p_{c}=v_{c} i_{c}=(10)(10)=100 \mathrm{~W} & p_{d}=-v_{d} i_{d}=-(10)(1)=-10 \mathrm{~W} \\
p_{e}=v_{e} i_{e}=(-10)(-9)=90 \mathrm{~W} & p_{f}=-v_{f} i_{f}=-(-100)(5)=500 \mathrm{~W} \\
p_{g}=v_{g} i_{g}=(120)(4)=480 \mathrm{~W} & p_{h}=v_{h} i_{h}=(-220)(-5)=1100 \mathrm{~W}
\end{array}
$$

$$
\begin{aligned}
p_{\text {supplied }} & =p_{a}+p_{b}+p_{d}=-1200-1080-10=-2290 \mathrm{~W} \\
p_{\text {absorbed }} & =p_{c}+p_{e}+p_{f}+p_{g}+p_{h} \\
& =100+90+500+480+1100=2270 \mathrm{~W}
\end{aligned}
$$

$$
p_{\text {supplied }}+p_{\text {absorbed }}=-2290+2270=-20 \mathrm{~W}
$$

The power is unbalanced due to errors in data It should be equal ZERO

## Solve The Problem

The voltage and power values for each of the elements shown.
a) Show that the interconnection of the elements satisfies the power check.
b) Find the value of the current through each of the elements using the values of power and voltage and the current directions shown in the figure.

## TABLE P1.32

| Element | Power (kW) | Voltage (V) |
| :--- | :--- | :---: |
| a | 0.6 supplied | 400 |
| b | 0.05 supplied | -100 |
| c | 0.4 absorbed | 200 |
| d | 0.6 supplied | 300 |
| e | 0.1 absorbed | -200 |
| f | 2.0 absorbed | 500 |
| g | 1.25 supplied | -500 |



## Assignment



The voltage and current at the terminals of an automobile battery during a charge cycle are shown in Figures.
a) Calculate the total charge transferred to the battery.
b) Calculate the total energy transferred to the battery.
c) Find the total energy delivered to the element.

